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An analysis for predicting the interaction of a steady oblique shock wave and a planar 
mixing region is presented. Specifically, an equation for the shock curvature was 
obtained from the shock wave and isentropic wave difference equations which govern 
the shock transmission within a region of varying Mach number. The effects of non- 
uniform gas composition within the mixing region were assessed using a similar 
treatment; however, the wave equations were expanded in terms of a varying ratio of 
specific heats instead of a varying Mach number. An expression for the shock-induced 
vorticity due to velocity and density gradients within the mixing region was also 
obtained. This expression provides a means of estimating the possible mixing 
augmentation induced in various shock wave-mixing region interactions. When the 
velocity and density gradients within the mixing region oppose each other, i t  is 
demonstrated that the pre-shock vorticity may be attenuated by the shock. Applications 
of the analysis are discussed with reference to specific examples involving mixing 
augmentation and shock oscillation. 

1. Introduction 
Mixing between fuel and air streams under highly compressible conditions, such as 

occur in a supersonic combustion ramjet (scramjet) engine, is inherently slow. In order 
to enhance the mixing rates (and thereby produce a more efficient engine), reliable 
mixing augmentation techniques must be developed. A number of candidate methods 
are currently being investigated. 

A variety of bluff and streamlined bodies and geometries have been used in attempts 
to destabilize the fuel-air mixing region and induce large-scale vorticity (Guirguis 
1988; Northam et al. 1991 ; Roy 1991 ; Tillman, Patrick & Paterson 1991 ; Fernando & 
Menon 1993). Attempts have been made to optimize the injection configuration by (i) 
using different jet cross-sections (Schadow, Gutmark & Wilson 1990) ; (ii) altering the 
fuel injection angle (Northam & Anderson 1986); and (iii) utilizing multiple points of 
injection. Pulsed injection has also been used in attempts to achieve faster mixing 
(Randolph, Chew & Johari 1994). Pressure mismatching between the fuel and air 
streams has been examined (Sullins et al. 199 1 ; Hall, Dimotakis & Roseman 1993) and 
under certain conditions mixing augmentation has been observed (Gilreath & Sullins 
1989). Li, Kailasnath & Book (1991) examined the possibility of using expansion waves 
to enhance mixing in co-flowing supersonic streams. Currently, shock impingement 
appears an attractive candidate for mixing enhancement due, in part, to the inherent 
presence of shock waves within the intake and combustor regions of scramjet engines. 

i Present address: Department of Engineering Science, University of Oxford, Parks Road, Oxford 
OX1 3PJ, UK. 
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Varying degrees of shock-induced mixing augmentation have been observed 
experimentally. Marble, Hendricks & Zukoski (1987) and Marble et al. (1990), utilized 
an oblique shock to enhance the mixing rate of circular jets in a co-flowing air stream. 
Mixing enhancement was also demonstrated by Menon (1989) using shock 
impingement on a mixing region formed between a sonic helium jet and a supersonic 
nitrogen stream. Hyde et al. (1990) also observed shock-induced mixing enhancement 
in their wall slot injection studies. Shock impingement was used by Waitz, Marble & 
Zukoski (1993) in a contoured wall injector configuration in an attempt to enhance the 
mixing and penetration of the jets. Axial vorticity was induced through the shock 
interaction; however, additional vorticity sources which also enhanced the mixing were 
present. Accelerated mixing was observed by Shau, Dolling & Choi (1993), but only at 
locations close to the shock wave; further downstream, the mixing rate relaxed to the 
undisturbed value. 

A number of numerical studies investigating shock-augmented mixing have recently 
been conducted. Kumar, Bushnell & Hussaini (1989) used an Euler code to study the 
conversion of the mean flow energy into fluctuating energy by modelling an oscillating 
shock wave such as may arise due to boundary layer separation in a compression 
corner. Yang, Kubuta & Zukoski (1993) examined the unsteady interaction of an 
imbedded gas cylinder and a normal shock wave and thereby gained insight into the 
analogous steady problem, namely the interaction of an oblique shock and a circular 
fuel jet. The interaction of an oblique shock and circular fuel jet was studied directly 
by Drummond (1991) using a Navier-Stokes solver. He observed greatly enhanced 
mixing due to the streamwise component of vorticity that was added to the jet through 
the interaction process. In another numerical study, Vasilev et al. (1994) observed 
mixing enhancement factors of between 2 and 4 when single oblique shock waves 
interacted with square mixing jets. 

Analytical approaches relevant to the study of shock wave-mixing region 
interactions have also been developed. Calculations based on analytical models of 
shock wave-turbulence interactions indicate that varying degrees of turbulence 
generation and amplification are possible, depending on the actual system (e.g. 
Morkovin 1960; McKenzie & Westphal 1968; Anyiwo & Bushnelll982; Ribner 1987). 
Using a linearized approach, Riley (1959) modelled steady flow features associated 
with the impingement of an oblique shock wave on a boundary layer. Henderson 
(1967) examined the steady features of shock wave-boundary layer interactions by 
approximating the boundary layer profile with incremental Mach number steps and 
solving the wave equations governing the shock transmission at each step. Roshko & 
Thomke (1970) also modelled the boundary layer as an inviscid region of vortical flow; 
compression corner pressure distributions were successfully predicted using a method 
of characteristics solution. 

The current modelling of the shock wave-mixing region interaction is similar to that 
adopted by Henderson (1 967). However, instead of simultaneously solving the 
governing wave equations at incremental steps in the Mach number distribution, the 
wave equations are expanded in difference form to give a differential equation for the 
shock trajectory due to a continuously varying Mach number region. Having 
established the relationship between the shock curvature and the Mach number 
gradients, an expression for the post-shock vorticity is then obtained. The present 
analysis provides a means of rapidly estimating the changes in the large-scale vorticity 
due to the steady interaction of an oblique shock wave and a planar mixing region. It 
may be possible to infer the shock-induced changes in the mixing rate which persist 
after unsteady mixing enhancement effects have decayed using the present vorticity 
rc-wltq 
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2. Modelling the interaction process 
2.1. EfSects of a non-uniform Mach number distribution 

Consider the situation depicted in figure 1. The incident shock wave is assumed to be 
a steady oblique shock wave generated by a flat plate. In the region upstream of the 
shock wave, the flow is assumed to be parallel, free from all pressure gradients, and is 
initially characterized by a steady transverse variation in Mach number alone. The 
shock does not decelerate the flow to subsonic speeds. A perfect gas with a constant 
value of y is assumed to exist throughout the flow field, although the composition of 
the flow is not necessarily uniform. Figure 1 depicts a flow in which there is a step in 
the Mach number distribution; however, the limit SM, + 0 will be taken. That is, a 
solution for a continuous variation in pre-shock Mach number is sought. When Ml(y) 
is continuous, the waves initially reflected will be isentropic. 

Transmission and reflection of the incident shock wave will be such that on either 
side of the dividing streamline, the flow will have the same pressure and be moving in 
the same direction (see figure 1). Conditions of matched deflection and pressure are 
given by 

6w = - 61r, (1) 

&Pp3 = SP,. (2) 
Assuming that the region into which the incident wave is transmitted has the same 

y as the initial region, the pressure change across the transmitted wave can be obtained 
from the Rankine-Hugoniot shock relations (Liepmann & Roshko 1957) as 

once second-order terms in SM, and SO are neglected. To a similar approximation, the 
shock relation for the flow deflection through the transmitted oblique shock wave gives 

(4M,(y + 1) sin 0 cos 0) SM, + (2M: sin2 0 ((y + 1) - 2y sin2 0) + 2Mi((y + 1) 

-4sin20)+4)S19+(M~sin2H(4ysin2B-(y+ 1)')-4M?(y- l)sin2H-4)Sw = 0. (4) 
The pressure change caused by the reflected isentropic wave is given (Liepmann & 

Roshko 1957) by 

The requirement of matched flow direction on either side of the dividing streamline 
(equation (1)) allows ( 5 )  to be expressed as 

The matched pressure condition (2), may be written 

a=--, 0% Pz 
P1 P2 PI 

(7) 

Combining (3) and (6) and the relationship for the oblique shock pressure ratio with 
(7) yields the expression 

4M1 sin' 8 SM, + 4 M ;  sin H cos 0 RH + ( M ~  - l)l,z ( I  - y + 2yM: sin' 19) Sw = 0. (8) 
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FIGURE 1. Shock wave-Mach number gradient interaction model: i, incident shock; 
t, transmitted shock: r, reflected isentropic wave. 

By eliminating Sw between (4) and (8), the following expression is obtained: 

= - (4M: A sin4 #[4y sin2 r3 - (y  + 1)’] - 8Mf sin3 O[y(y + 1) cos B+ 2A(y - 1) sin O] 

-4M1 sin 9[4A sin O - (y + 1) (y - 1) cos 6]}/{4M; sin3 O[y sin O((y + 1) - 27 sin’ 8) 

- A cos S(4y sin2 H - (y + 1)9] + 2M;‘ sin2 6[2y((y + 1) - 4 sin2 0) - (y  - l)(y + 1) 

- 2y sin2 0) + 847 - 1) sin Bcos S] + 2M:[8A sin # cos 19 

+4y sin2 6- (y  - l)((y + 1) -4 sin2 O)] - 4(y- l)}, (9) 

where A = ( M ; -  1)yM; .  

Equation (9) is the relationship which determines the change in shock direction due to 
gradients in the pre-shock Mach number distribution. 

In the current model, the major source of shock curvature is the Mach number 
distribution ahead of the wave, since it is assumed that the shock is generated by a 
straight oblique wedge at an angle low enough to maintain supersonic flow throughout 
the flow field. Additional changes in shock direction may occur due to the impingement 
of post-shock isentropic waves (figure 2). These secondary isentropic waves arise 
through the interaction of the primary isentropic waves and the post-shock Mach 
number gradients. However, because the secondary isentropic waves will typically be 
weaker than primary isentropic waves, the impingement of post-shock isentropic waves 
will generally have a similar influence on the shock direction than the pre-shock Mach 
number distribution. Furthermore, if the Mach number remains sufficiently high 
throughout the mixing region, the oblique angles of the shock wave and the post-shock 
isentropic waves will result in a large proportion of the shock wave-isentropic wave 
interaction events occurring after the shock wave has passed through the mixing 
region. Thus, to a fair approximation, the shock direction within the mixing region 
may be treated as a function of the pre-shock Mach number alone. That is, 
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FIGURE 2. Illustration of a post-shock iscntropic wave impinging on the oblique shock. 
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FIGURE 3 .  Wave angles for shocks of different strengths in a region of varying Mach number, 
7' = 1.4. 

Given initial values of M ,  and 0 it is thus possible to integrate (10) (for a known value 
of y )  to find the shock angle at any particular Mach number (provided M ,  > 1). 
Having obtained the shock wave angle as a function of the pre-shock Mach number, 
the shock properties such as pressure ratio, temperature ratio, and flow turning angle 
may be calculated using the usual oblique shock relations. Furthermore, if the Mach 
ixumber distribution ahead of the shock, M,(y) is also available, the shock wave 
irajectory U(y) may be determined. (Alternatively, M,(y) may be found if 8(y)  is 
ltnown.) 

Results from the integration of (10) are presented in figure 3 for y = 1.4 and a 
number of initial values of M I  and 8. Each of the shock waves represented has a 
different 'wave strength', r ,  which is a parameter that is currently defined as the pre- 
shock Mach number at which the post-shock flow becomes sonic. Shock waves which 
pass through regions of variable Mach number cannot simply be defined in terms of 
say the pressure or density ratio, because these values change as the shock moves into 
regions of different Mach number. 

As a demonstration of the interpretation of figure 3 ,  consider the shock wave with 
s'trength n = 2. Such a shock wave will have an angle of approximately 17" at a Mach 
number of 10. If this same oblique shock wave enters a region of flow with a Mach 
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FIGURE 4. Pressure ratios for shocks of different strengths in a region of varying Mach number, 

y = 1.4. 

number lower than 10, then for each Mach number, the angle of this shock will be 
given by the curve a = 2 shown in figure 3. For example, if the shock passes into a 
region where M ,  = 5 ,  at this location the shock will have an angle of approximately 
25". If this shock reaches a flow region where M ,  = 2, then at this point the shock angle 
will be approximately 62" and the post-shock flow will be sonic; if the shock enters a 
flow region with M I  < 2, a subsonic post-shock flow will be produced and no solution 
is possible with the current method. 

The pressure ratios across the shock waves of figure 3 are presented in figure 4;  these 
curves were calculated using the usual oblique shock pressure relationship with 
y = 1.4. Following the values of 8 (figure 3) andp,/p, (figure 4) along any of the waves 
(a = const.) reveals that, generally. lower wave angles and higher pressures will be 
generated by shocks in higher Mach number regions. This effect is in accord with the 
well-known weak oblique shock results which dictate that an oblique shock will lie 
closer to the generating wedge and produce a larger pressure ratio at higher oncoming 
Mach numbers. 

Some straightforward results worth noting are obtained by examining the governing 
equation in the hypersonic limit ( M I  m). For an oblique shock wave with an angle 
8, the post-shock Mach number M2 approaches a finite, non-zero value as M ,  + co. 
The quantity A in (9) is therefore finite as M ,  + co. Since the largest terms in the 
numerator of (9) are O(M!),  whereas the largest terms in the denominator are O(M!) ,  
it is clear that dO/dM, + O  in the hypersonic limit. In other words, as higher Mach 
numbers are approached, the shock wave direction becomes less sensitive to Mach 
number changes, as figure 3 clearly illustrates. This result is rational since SM, becomes 
meaningless if M ,  - cc . 

For a given value of y, certain M I  and 0 combinations will allow the entry of a shock 
wave into a different Mach number region without generating a reflected isentropic 
wave. Such a neutral oblique shock transmission situation is analogous to the tailored 
interface condition in an unsteady reflected shock tunnel. Henderson (1967) obtained 
the following result for neutral oblique shock transmission in a gas with uniform y :  

P2IP1 = w- 1. (1 1) 
Thus, the neutral transmission oblique shock angle is given by 

1 Y +  1 1 ljZ U =  sin- ( 2y j 
Y G  
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when y is constant. Using (12), the locus of neutral transmission conditions is plotted 
in figure 3 for y = 1.4. Shock waves will generate isentropic expansion waves as they 
enter regions of lower Mach number, except when the Mach number is lower (or wave 
angle is higher) than the neutral value. Conversely, isentropic compression waves will 
be generated if the shock enters regions of higher Mach number, except when the Mach 
number is lower (or wave angle is higher) than the neutral value. 

2.2. Eflects of mixing between dissimilar gases 
In the previous subsection it was assumed that the ratio of specific heats of the pre- 
shock mixing region was constant. This is a reasonable assumption for a fuel-air 
mixing region if the fuel is hydrogen and negligible real gas effects are present in the 
air, since both streams will have y FZ 1.4. However, if a simulated fuel-air mixing 
region such as that formed between helium (y  = 1.66) and air is being examined, or a 
significant fraction of water vapour (y = 1.33) is present due to combustion, or if the 
fuel is a hydrocarbon such as ethane (y = 1.19), then a measurable change in y may be 
evident, and could affect the transmission of a shock wave through the mixing region. 

To assess the effects of a varying-? region on the shock transmission, an analysis 
similar to that presented in the previous section was performed (Buttsworth 1994). For 
the non-uniform y-distribution analysis, the pre-shock Mach number was treated as a 
constant so that the final expression analogous to (10) was 

Given initial values of y and B it is thus possible to integrate (13) (for a known value 
of M I )  to find the shock angle at any particular value of y (provided M ,  > 1). Typical 
results are presented in figure 5 for Mi = 3 and 7. 

The results indicate that an oblique shock wave of moderate strength may experience 
a significant change in direction if it passes into a flow region with a different y. For 
example, consider two shock waves: the first with an angle of approximately 40" in a 
uniform Mach 3 flow, and the second with an angle of approximately 30" in a uniform 
Mach 7 flow. Both of these hypothetical shocks will increase their angles by about 5" 
in passing from a region where y = 1.0 to a region where y = 2.0. At hypersonic 
speeds, even a small change in shock angle may induce measurable differences in say, 
thl: post-shock pressure. Therefore, under certain extreme conditions, the shock 
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transmission can be affected by variations in y .  However, for weaker shock waves, or 
for transverse variations in y that are more representative of actual scramjet combustor 
conditions, the effects will be far less severe. For example, figure 5 indicates that a flow 
region in which y varies between 1.3 and 1.4 will cause a 30" shock in a Mach 3 flow 
to change direction by less than 0.2". 

2.3. Shock-induced changes in mixiizg characteristics 
Hayes (1957) derived an expression for the vorticity jump across a gasdynamic 
discontinuity in an inviscid flow. The result obtained by Hayes was more general than 
previous derjvations by Truesdell { 1952) and Lighthill (1957) which utilized 
thermodynamic relationships such as Crocco's vorticity law. No assumptions regarding 
the thermodynamic properties or composition of the gas were made: the derivation 
was based on a purely dynamic approach. In the current planar shock wave problem, 
the equation derived by Hayes for the vorticity jump in steady flow (Hayes, equation 
17) may be written 

where n and t refer to the directions normal and tangential to the shock wave. 
For the purpose of calculating the vorticity, flow properties along streamlines ahead 

of the shock are assumed constant. That is, the effects of mixing on the streamwise 
variation of properties are neglected. The natural coordinate system may therefore be 
transformed to the Cartesian plane using 

til, = u, sin 8, Ult = u1 cos 8, 
8 . d  
- = sin 8-. 
at dY 

In the present case, the pre-shock vorticity, t1, is simply 

(15ct-c) 

Currently, it is assumed that the effects of post-shock isentropic wave impingement are 
small and that the influence of any variations in y can be neglected. Thus, the shock 
wave direction is determined by the pre-shock Mach number alone. Therefore, 

dB d8 dM, 
dy dM, dv ' 

- 

Since velocity and density gradient terms occur in the initial vorticity expression, (14). 
it is convenient to likewise express the Mach number gradient in terms of these 
variables. Expanding the Mach number gradient with use of the perfect gas relations 
yields 

dM, 1 du, IW,dp, +-- (18) - 
dY a, dY 2P, dv 

since it has already been assumed that dpJdy = 0. Combining (14)-(18) gives 
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FIGURE 6.  region 

To facilitate further discussion of this equation, it is now written as 

of varying 

where the functions f, and& are defined by a direct comparison of (19u) and (19h). 
For various shock waves of different strength, the functions f, and 6 are presented 

in figure 6. For all shock waves, f ,  < - 1, and& < 0. Therefore, if the pre-shock flow 
has no density gradients, then vorticity will be amplified. If the pre-shock flow has no 
velocity gradients, then vorticity will be generated provided density gradients exist in 
the flow. In general, if both density and velocity gradients exist in the pre-shock flow, 
the vorticity may be either amplified or attenuated through the shock interaction, 
depending on the direction and magnitude of the gradients and the values of velocity 
arid density. Provided both the velocity and density gradients lie in the same direction, 
the vorticity will be amplified. When these gradients lie in opposite directions, the 
density gradient will work against the amplification of vorticity and attempt to induce 
a rotation in the opposite sense to the pre-shock vorticity. That is, when the velocity 
arid density gradients oppose each other, it is possible that the vorticity will be 
attenuated by the shock. 

The possibility of vorticity attenuation is now demonstrated for the special case of 
a uniform Mach number flow. If the pre-shock Mach number is uniform, the velocity 
and density gradients lie in opposite directions and are related by 

In a uniform Mach number flow, the shock generated by a wedge will be straight. Thus, 
(1'3) may be written 

The above expression can also be obtained from a consideration of stream tube 
compression due to a straight oblique shock and applies even when the post-shock flow 
is subsonic (Buttsworth 1994). The values of tz/[, predicted by (21), are plotted in 
figure 7 for various pre-shock Mach numbers. Figure 7 reveals that the pre-shock 
vclrticity may either be amplified or attenuated by the shock wave. By rearranging ( 1  9) 
in terms of the pre-shock vorticity and Mach number gradients (i.e. utilizing (18)), it 
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FIGURE 7. Vorticity amplification and attenuation by straight shock waves, y = 1.4, 

can be observed that in the hypersonic limit, the vorticity amplification will also be 
given by (21). This is a rational result because as M ,  + co, dOfdM, +. 0, meaning that 
the shock wave must be straight. Vorticity amplification results for the hypersonic limit 
are also presented in figure 7. 

3. Applications of the interaction model 
3.1. Mixing augmentation 

While shock waves may locally induce a significant amount of mixing through 
unsteady mechanisms such shock oscillations and shock-turbulence interactions (e.g. 
Kumar et af. 1989), further downstream the mixing rate is likely to be governed in part 
by the large-scale post-shock vorticity. For example, Shau & Dolling (1992) observed 
an increase in the turbulent activity through shock impingement on a shear layer; 
however, such augmentation was found to rapidly decay downstream of the shock 
impingement location. The current analysis presents a means of calculating the steady 
component of the post-shock vorticity and thus provides a guide to the possible mixing 
augmentation that may persist after the unsteady mixing enhancement effects have 
decayed. 

During scramjet powered flight at Mach numbers lower than approximately 12, the 
fuel (hydrogen) is likely to be injected as a jet which moves at a speed in excess of the 
air velocity (Anderson, Kumar & Erdos 1990). At flight Mach numbers higher than 
approximately 12, the fuel is likely to form a wake (i.e. fuel injection at speeds lower 
than the air velocity). Since the injected hydrogen will be less dense than the combustor 
air stream, the gradients of density and velocity will typically be aligned only when the 
fuel is injected at a speed lower than the surrounding air. Therefore, the vorticity in the 
mixing region would be amplified through a shock wave interaction in the wake flow 
case ( M ,  > 12). If the fuel and the air are flowing at the same velocity ( M ,  N" 12), 
increased vorticity may result from shock wave impingement. However, in the jet flow 
case ( M ,  < 12), the velocity and density gradients will be misaligned. This 
misalignment does not immediately imply that the vorticity will be attenuated by the 
shock ; however, it does indicate that the components of the shock-induced vorticity 
associated with the density and the velocity fields will counteract each other. Thus, at 
the higher flight speeds ( M ,  > 12), shock impingement may augment mixing, whereas 
at the lower speeds ( M ,  < 12), shock impingement is likely to be less efficient and may 
even attenuate the mixing. 
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FIGURE 8. Schematic representation of the symmetric 10" wedge shock-induced mixing 
configuration studied by Drummond et nl. (1991). 

Drummond, Carpenter & Riggins (1991) examined the effects of shock impingement 
on a mixing layer formed between two streams both at Mach 2, but moving at different 
velocities. In the calculations performed by Drummond and his colleagues, two shocks, 
each with a turning angle of lo", entered the mixing layer symmetrically from each side 
a,s shown in figure 8. Using the free-stream conditions reported by Drummond et al. 
(1991), and the assumption that the local total enthalpy is a linear function of the 
rnixing layer velocity (Hayes & Probstien 19591, it is estimated that the minimum Mach 
number within the mixing layer was 1.92. For M I  = 2 and 8 = 39.3" (corresponding to 
a 10" turning angle shock), (10) gives dH/dMl = -21.82" (for y = 1.4). Thus, it is 
estimated that the shock direction changed by less than 2" during its traverse of the 
rnixing layer. Therefore, according to the current predictions, the shocks that pass 
through this layer will be approximately straight. in which case the post-shock vorticity 
will be given by (21). 

According to the present calculations, the first shocks which impinge on the mixing 
layer will amplify the vorticity by a factor of 1.15 (read off t2/t1 in figure 7 on the curve 
fM, = 2 at 19 = 39.3"). From oblique shock calculations, the flow Mach number behind 
the first shocks was 1.64 and the angle of the second shocks (relative to the oncoming 
flow direction) was 49.4". At these conditions, the second shocks will amplify the 
vorticity by a factor of only 1.01. Using the present analysis, it is concluded that very 
little vorticity was gained through the action of the reflected (or second) shocks, and 
had further straight oblique shocks processed the mixing layer, the vorticity would 
probably have been attenuated. The current predictions indicate that the net shock- 
induced vorticity amplification was only 16 % which explains why Drummond et al. 
(1991) observed very little mixing augmentation and why they found it necessary to use 
it curved shock generated by a blunt body in order to amplify the vorticity and thus 
enhance the mixing. Additional shock curvature (and thus vorticity) may be generated 
in other mixing layers without resorting to blunt bodies, provided a significant Mach 
number gradient exists within the mixing region. 

3.2. Oscillating shock waves 
Kumar et al. (1989) numerically simulated wall region induced shock oscillations by 
imposing a periodic Mach number distribution in the wall region upstream of a 10" 
compression corner. The periodic Mach number distribution was given by 

M,(y, t )  = M,(1 +esin2xct), (22) 
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FIGURE 9. (a) Mach number distributions and (b) shock trajectories for t = 1/4c (-), 1/2c(----), 
and 3/4c (---) in the oscillating shock wave problem. 

where M,=3 

and 

The steady analysis presented in the current study was used to provide a solution for 
the Kumar et al, oscillating shock problem which applies in the limit of an infinite 
oscillation period. 

By integrating (10) using y = 1.4 and the initial conditions M I  = 3 and H = 27.4” 
(which corresponds to a turning angle of loo), the instantaneous shock trajectory (in 
the limit of an infinite oscillation period) may be determined using the above Mach 
number distribution (see figure 9). For the present analysis, the oscillation period was 
divided into 40 time steps; the shock trajectory and post-shock velocities were 
determined at each step. The calculation of the velocities downstream of the shock was 
simplified by (i) neglecting the small accelerations due to the post-shock isentropic 
waves; and (ii) treating all the post-shock streamlines _ _  as moving in a direction parallel 
to the wedge. The quantities and and +(d2+d2) were then obtained for y = 0.065 
and 0.25 by the appropriate averaging over the oscillation period. Results obtained 
from this procedure are presented in figure 10; the results obtained by Kumar et al. are 
included for comparison. 

Kumar et al. found that the disturbances generated in the wall region propagated 
along the shock to produce a curved oscillating shock in the free-stream region 
( y  > 0.25, approximately). In the current calculations, the wall region disturbances do 
affect the shock location (figure 9) ; however, the free-stream shock remains straight. 
The present shock oscillation region (see figure 10) is characterized by a relatively flat 
distribution of normalized Reynolds stress and lies upstream of the Kumar et al. 
predictions. The finite shock thickness calculated in the numerical scheme of Kumar et 
al. may contribute to these differences. From the results presented by Kumar et nl., the 
steady shock wave thickness was estimated to be 0.05 units in the x-direction. Since this 
thickness is comparable to the maximum shock distance, shock smearing is likely to 
have affected their results. As the shock oscillation frequency decreases, the Kumar et 
al. results indicate that, for locations within the shock oscillation region, the magnitude 
of the normalized Reynolds stress increases. The present results suggest that this trend 
does not continue to the limit of an infinite oscillation period. That is, for the 
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FIGURE 10. Normalized time-averaged Reynolds stress production by the oscillating shock at 
(a) y = 0.065 and (b) 0.25: -, present results; ---, results from Kumar et al. (1989). 

configuration examined, the maximum value of normalized Reynolds stress will be 
generated at a finite (non-zero) shock oscillation frequency. 

4. c;onclusion 
The interaction of an oblique shock with a planar supersonic mixing region was 

modelled using difference forms of the Rankine-Hugoniot equations. A differential 
equation describing the shock trajectory due to gradients in the pre-shock Mach 
number was obtained. The impingement of post-shock isentropic waves on the shock 
wave, and variations in the ratio of specific heats across the mixing region, can 
influence the shock trajectory; however, these effects are frequently small. When such 
effects can be neglected, the shock trajectory becomes a function only of the Mach 
number distribution within the mixing region. The equation governing the shock 
trajectory due to the Mach number gradients was integrated for a number of different 
shocks. Shock pressure ratio and vorticity results are also presented for a number of 
shocks. 

It was found that the pre-shock vorticity will not necessarily be amplified through 
the shock interaction. For the special case of straight shock waves, the vorticity is likely 
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to be atlenuated when the post-shock Mach number approaches unity. In the more 
general case of a mixing region with significant Mach number variations, vorticity will 
be amplified if the velocity and density lie in the same direction, but may be attenuated 
if they lie in opposite directions. Thus, for scramjets, shock-induced mixing 
enhancement may be more effective at the higher flight speeds since the velocity and 
density gradients within the mixing region are typically aligned at the higher speeds. 
The use of the present vorticity analysis as a means of assessing proposed shock 
impingement configurations was demonstrated by predicting the mixing augmentation 
(based on vorticity amplification) for a published shock wave-mixing layer simulation. 
Other aspects of the present shock analysis were demonstrated through the calculation 
of an oscillating shock configuration (in the limit of an infinite oscillation period). 
From a comparison with previous numerical shock oscillation results, it appears that 
there exists a finite (non-zero) shock oscillation frequency at which the production of 
relative turbulent stress will be greatest. 
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Postgraduate Research Award and NASA through grant NAGW-674. 
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